fail-fast 机制,即快速失败机制,是java集合(Collection)中的一种错误检测机制。当在迭代集合的过程中该集合在结构上发生改变的时候,就有可能会发生fail-fast,即抛出ConcurrentModificationException异常。fail-fast机制并不保证在不同步的修改下一定会抛出异常,它只是尽最大努力去抛出,所以这种机制一般仅用于检测bug。
fail-fast的出现场景
在我们常见的java集合中就可能出现fail-fast机制,比如ArrayList,HashMap。在多线程和单线程环境下都有可能出现快速失败。
单线程环境下的fail-fast
ArrayList发生fail-fast例子:
1 | public static void main(String[] args) { |
该段代码定义了一个Arraylist集合,并使用迭代器遍历,在遍历过程中,刻意在某一步迭代中remove一个元素,这个时候,就会发生fail-fast。
HashMap发生fail-fast:
1 | public static void main(String[] args) { |
该段代码定义了一个hashmap对象并存放了10个键值对,在迭代遍历过程中,使用map的remove方法移除了一个元素,导致抛出了ConcurrentModificationException异常:
多线程环境下
1 | public class FailFastTest { |
启动两个线程,分别对其中一个对list进行迭代,另一个在线程1的迭代过程中去remove一个元素,结果也是抛出了java.util.ConcurrentModificationException
fail-fast的原理
fail-fast是如何抛出ConcurrentModificationException异常的,又是在什么情况下才会抛出?
我们知道,对于集合如list,map类,我们都可以通过迭代器来遍历,而Iterator其实只是一个接口,具体的实现还是要看具体的集合类中的内部类去实现Iterator并实现相关方法。这里我们就以ArrayList类为例。在ArrayList中,当调用list.iterator()时,其源码是:
1 | public Iterator<E> iterator() { |
即它会返回一个新的Itr类,而Itr类是ArrayList的内部类,实现了Iterator接口,下面是该类的源码:
1 | /** |
其中,有三个属性:
1 | int cursor; // index of next element to return |
cursor是指集合遍历过程中的即将遍历的元素的索引,lastRet是cursor -1,默认为-1,即不存在上一个时,为-1,它主要用于记录刚刚遍历过的元素的索引。expectedModCount这个就是fail-fast判断的关键变量了,它初始值就为ArrayList中的modCount。(modCount是抽象类AbstractList中的变量,默认为0,而ArrayList 继承了AbstractList ,所以也有这个变量,modCount用于记录集合操作过程中作的修改次数,与size还是有区别的,并不一定等于size)
我们一步一步来看:
1 | public boolean hasNext() { |
迭代器迭代结束的标志就是hasNext()返回false,而该方法就是用cursor游标和size(集合中的元素数目)进行对比,当cursor等于size时,表示已经遍历完成。
接下来看看最关心的next()方法,看看为什么在迭代过程中,如果有线程对集合结构做出改变,就会发生fail-fast:
1 | "unchecked") ( |
从源码知道,每次调用next()方法,在实际访问元素前,都会调用checkForComodification方法,该方法源码如下:
1 | final void checkForComodification() { |
可以看出,该方法才是判断是否抛出ConcurrentModificationException异常的关键。在该段代码中,当modCount != expectedModCount
时,就会抛出该异常。但是在一开始的时候,expectedModCount初始值默认等于modCount,为什么会出现modCount != expectedModCount,很明显expectedModCount在整个迭代过程除了一开始赋予初始值modCount外,并没有再发生改变,所以可能发生改变的就只有modCount,在前面关于ArrayList扩容机制的分析中,可以知道在ArrayList进行add,remove,clear等涉及到修改集合中的元素个数的操作时,modCount就会发生改变(modCount ++),所以当另一个线程(并发修改)或者同一个线程遍历过程中,调用相关方法使集合的个数发生改变,就会使modCount发生变化,这样checkForComodification方法中就会抛出ConcurrentModificationException异常。类似的,hashMap中发生的原理也是一样的。
避免fail-fas
了解了fail-fast机制的产生原理,接下来就看看如何解决fail-fast
方法1
在单线程的遍历过程中,如果要进行remove操作,可以调用迭代器的remove方法而不是集合类的remove方法。看看ArrayList中迭代器的remove方法的源码:
1 | public void remove() { |
可以看到,该remove方法并不会修改modCount的值,并且不会对后面的遍历造成影响,因为该方法remove不能指定元素,只能remove当前遍历过的那个元素,所以调用该方法并不会发生fail-fast现象。该方法有局限性。
例子:
1 | public static void main(String[] args) { |
方法2
使用java并发包(java.util.concurrent)中的类来代替ArrayList 和hashMap。比如使用 CopyOnWriterArrayList代替ArrayList,CopyOnWriterArrayList在是使用上跟ArrayList几乎一样,CopyOnWriter是写时复制的容器(COW),在读写时是线程安全的。该容器在对add和remove等操作时,并不是在原数组上进行修改,而是将原数组拷贝一份,在新数组上进行修改,待完成后,才将指向旧数组的引用指向新数组,所以对于CopyOnWriterArrayList在迭代过程并不会发生fail-fast现象。但 CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。对于HashMap,可以使用ConcurrentHashMap,ConcurrentHashMap采用了锁机制,是线程安全的。在迭代方面,ConcurrentHashMap使用了一种不同的迭代方式。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时new新的数据从而不影响原有的数据 ,iterator完成后再将头指针替换为新的数据 ,这样iterator线程可以使用原来老的数据,而写线程也可以并发的完成改变。即迭代不会发生fail-fast,但不保证获取的是最新的数据。
本文链接: https://linbei.top/Fast-Fail%E6%9C%BA%E5%88%B6/
版权声明: 本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。转载请注明出处!